
Technology of 100% Circular Economy for Chlor-Alkali

Creation by Recycling
J. P. AN/ CEO, AMB-Tech GmbH
13 May 2025

jp.an@amb-tech.de

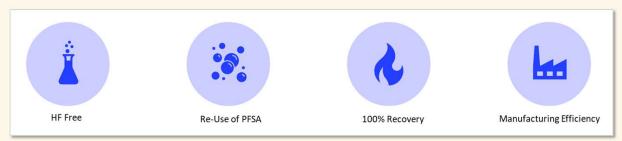
12th International Chlor-Alkali Technology Conference & Exhibition

- Technology Overview
- Chlor-Alkali Membrane Recycling
- Catalyst Coated Membrane Recycling
- Certification and Verification
- Appendix

Technology Overview

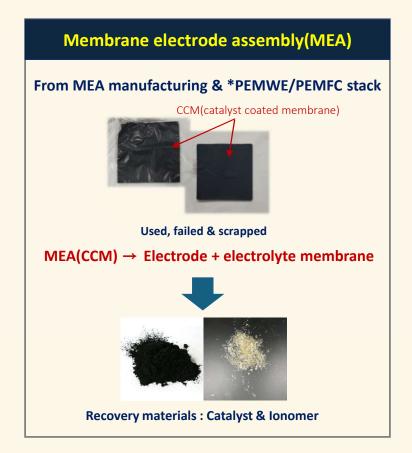
Background – I

- **Purpose:** Promote the adoption of environmentally treated materials by providing innovative and sustainable solutions.
- ✓ **AMB-Tech** is a specialized manufacturer that recycles high-performance ionomers used in the membranes of various electrochemical devices.
- ✓ By leveraging cutting-edge technology and a circular economy approach, **AMB-Tech** aims to provide sustainable solutions and play a key role in the eco-friendly product market.
- ✓ Through innovative recycling technology, **AMB-Tech** enhances the efficiency and sustainability of material production, contributing to the widespread adoption of environmental-friendly materials.



Technology Overview

Background - II


- **❖** Pain Points in the Market:
- > Growth requirements for manufacturing supply chains.
- **Environment issues :** PFSA ionomers have environmental concerns due to use fluoropolymers.
- High raw material costs limit scalability.
- **AMB-tech's Competitive Edge:**
- Proprietary recycling technology reuses end-of-life products.
- ➤ **Higher performance ionomers** than market competitors.
- **Cost-efficient solutions** via advanced recovery processes.

Technology Overview

Feedstock for recycling

- *PEMWE, polymer electrolyte membrane water electrolysis
- *PEMFC, polymer electrolyte membrane fuel cell
- *PEM, polymer electrolyte membrane
- *MEA, membrane electrode assembly
- *CA, Chlor-Alkali membrane

Polymer electrolyte membrane(PEM)

From PEM manufacturing & CA Electrolysis Cell

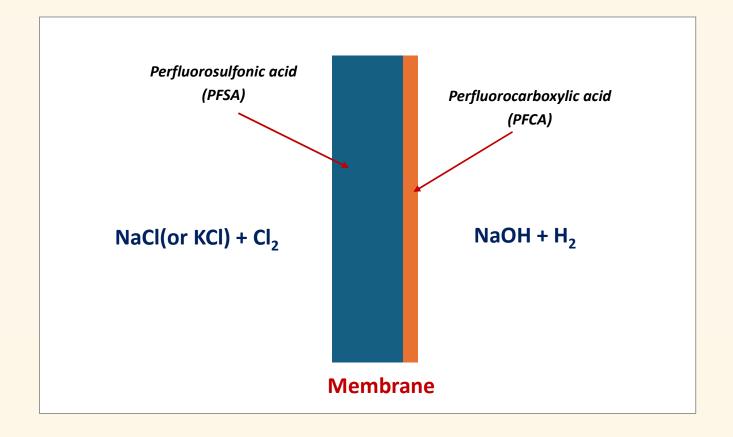
Membrane for Chlor-Alkali process,

Water electrolysis(Green hydrogen production) & PEM Fuel cells etc.

Used, failed & scrapped

PEM → Electrolyte membrane only

Recovery materials: Ionomer



Composition & structure of Chlor-Alkali membrane

Adopted in the production process of chlorine, caustic soda and hydrogen.

Composed of:

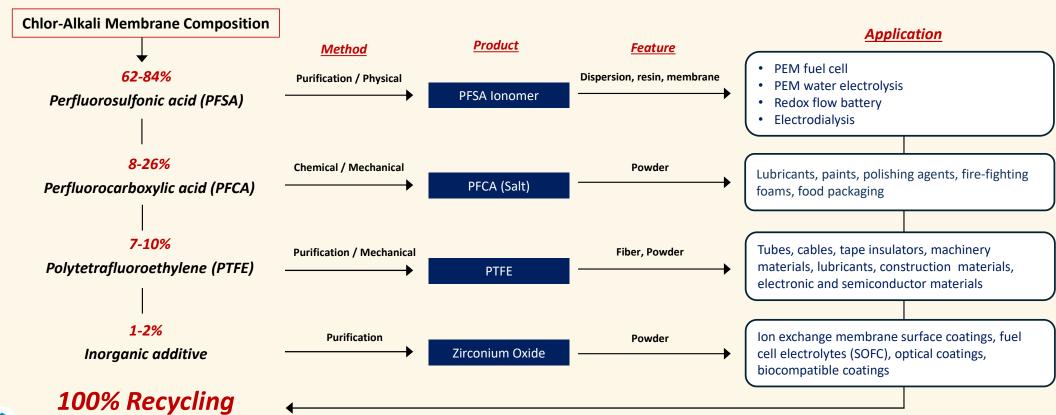
Perfluorinated sulfonic acid
Perfluorinated carboxylic acid
Polytetrafluoroethylene
Inorganic additive

Composition & structure of Chlor-Alkali membrane

Perfluorinated sulfonic acid(PFSA)

Characteristics

- PFSA is a proton conducting polymer.
- It has PTFE backbone that is responsible for mechanical strength due to its hydrophobicity.
- It possesses excellent chemical resistance under strongly acidic and high base conditions


Applications

PEMFC, PEMWE, Chlor-Alkali process, Electrodialysis, Flow Batteries, Chemical Sensors

Composition of Chlor-Alkali membrane, the recycled End Product and their Application

Recycling Process

Core Technology

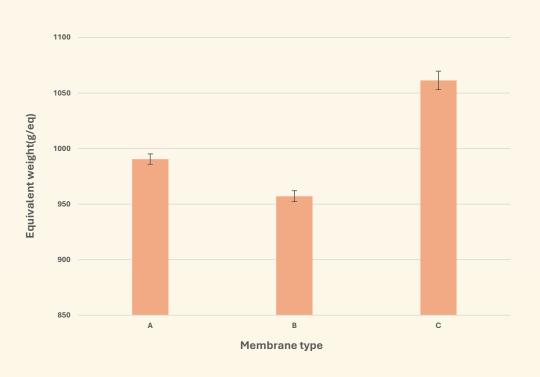
AMB-Tech proprietary **ionomer recycling technology** enhances membrane performance by enabling:

- > Superior ion conductivity & Lower hydrogen permeability.
- > High recovery efficiency, allowing reuse of valuable components.
- Advanced dispersion techniques, ensuring uniform coating for consistent performance.

Recycling Technology

- > Non-thermal PFSA recovery: AMB-Tech's process treats used membrane without high-energy thermal treatments.
- > Physical & Chemical treatment processes: Ensuring high purity of recovered materials.
- ➤ **High-efficiency material separation:** Enabling extraction of PFSA ionomer from membranes.

Recycling Process


ITEM	Impurity Removal	Ionomer Recycling	Ionomer Production
Process Flow	Physical Treatment Treatment	lonomer Extraction (Reaction) Physical Separation	Solidification Dispersion (Mixing) Resin Dispersion
	To remove impurity from used membrane → clean material	To separate lonomer & others	Ionomer resin → Ionomer dispersed solution

Recycling product evaluation

X EW(Equivalent weight) of AMB-tech's Recycled Ionomer

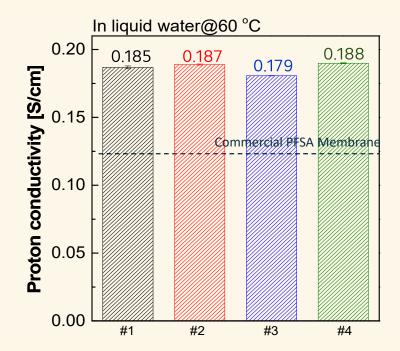
EW(Equivalent weight) was calculated from IEC(Ion exchange capacity) values obtained through acid-base titration

(Error bars represent 95% confidence intervals)

Recycling product evaluation

X Impurities of Recycled Ionomer

Element	Unit	Inspection Method	Results	
Element	Onit		Data	Spec.(Max.)
Fe, Cr, Ni		DIN EN ISO 11885 (ICP-MS)	<1	20
Na, K	ppm(µg/g)		<10	100

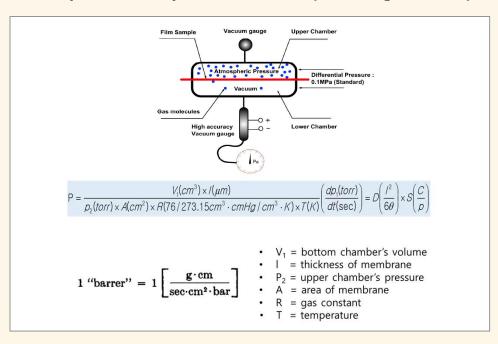

Recycling product evaluation

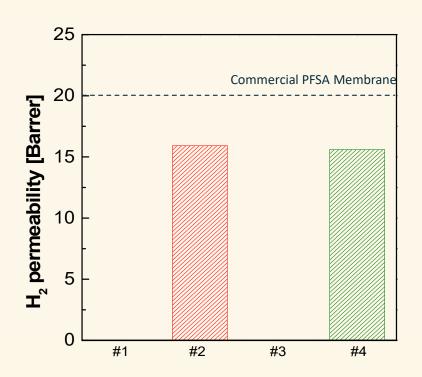
X Ion conductivity measurement (4-probe, In-plan)

The bulk resistance of each membrane coupon (size: 1 cm×4 cm) was measured with an electrode system connected with Biologic VSP multichannel potentiostat (Claix, France) using 4-probe alternating current (ac) impedance spectroscopy. The proton conductivity was obtained using the following equation:

$$\sigma = \frac{l}{R \times S}$$

where \dot{o} is the proton conductivity in Scm⁻¹, R is the ohmic resistance of the membrane, I is the distance between reference electrodes, and S is the cross-sectional area of the membrane. The impedance measurement was carried out in constant temperature chamber that was electrically shielded to ensure a stable measurement without any noise


The ion conductivity of the polymer was shown to be up to 50.4 % higher than commercial PFSA membrane.



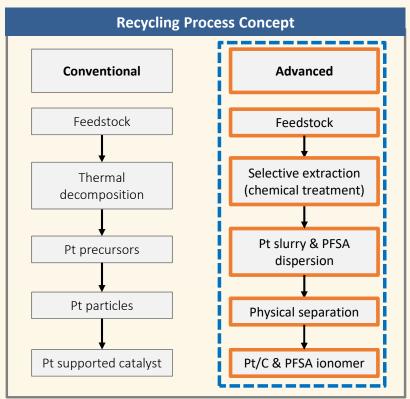
Recycling product evaluation

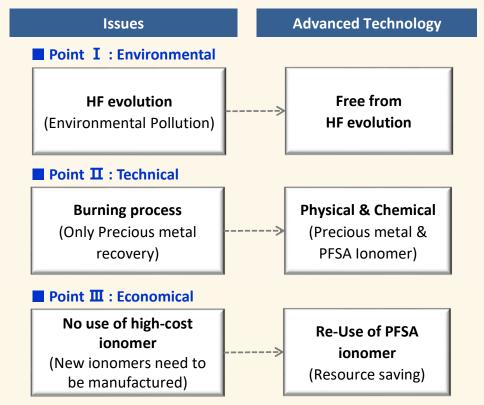
X Gas permeability measurement (Time-lag method)

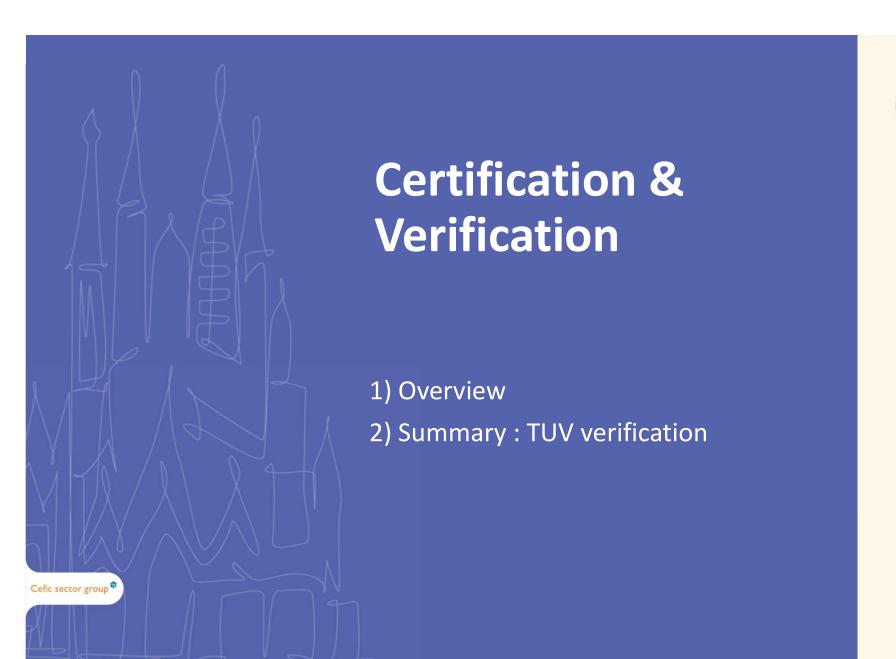
Ionomer form a denser membrane structure during fabrication.

This reduces the free volume of the polymer, limiting the diffusion pathways for hydrogen molecules.

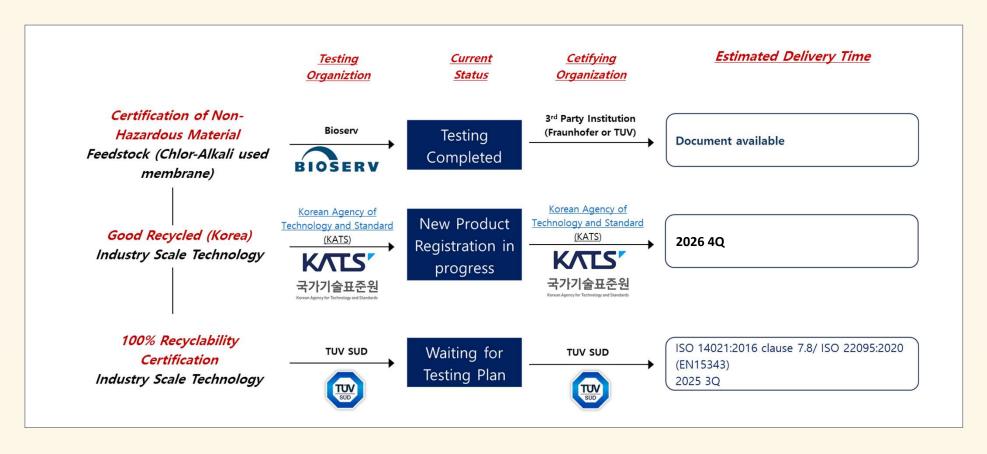
Consequently, the membrane exhibits approximately 20% lower hydrogen permeability compared to commercial PFSA membranes.




Catalyst Coated Membrane (CCM) Recycling


CCM recycling process

Challenge: Thermal process currently used to recycle MEA(CCM)s produces HF(Hydrogen Fluoride) toxins, uses high levels of energy and burns away valuable components.



Certification & Verification

Overview

Certification & Verification

Summary: TUV Verification

EN 15343:2007-Recycled Plastics Traceability

- Purpose: Ensures traceability and recycled content verification for plastics.
- Scope: Plastics value chain(manufacturers, recyclers, processors).
- Key features:
 - -. Documents raw material origin(collection, sorting, proceeding).
 - -. Calculates pre/post-consumer recycled content(%).
 - -. Verifies quality and process transparence via certification(e.g., c)

ISO 14021:2016-Self-Declared Environmental Claims(Type II)

- Purpose: Guarantees transparent, non-misleading environmental claims(e.g., recycled content).
- Scope: All industries (plastics, packaging, electronics).
- Key features(Clause 7.8-Recycled Content):
 - -. Requires quantitative claims(e.g., "30% recycled plastic") with traceability.
 - -. Distinguishes pre/post-consumer content; uses Möbius loop with %
 - -. Prevents greenwashing via documented evidence.

ISO 22095:2020-Chain of Custody

- Purpose: Provides a framework for supply chain traceability of materials/products.
- Scope: All materials(plastics, metals, textiles); excludes services.
- Key features:
 - -. Standardizes terms(e.g., traceability, mass balance).
 - -. Defines models(segregation, mass balance, identity preserved).
 - -. Enhances claim credibility but requires additional data for verification.

Conclusions

Company's Aims

World's best commercialized ionomer recovery technology

Leading global player in the materials(membrane & MEA) recycling

100% PFSA ionomer recovery rate

Circular economy model

Better recycling efficiency

Innovative technology

Significantly lower costs

Cost-efficient production

| Supply stability & Manufacturing scalability

Providing sustainable solutions to meet the growing global demand

Let's build a cleaner future together

AMB-Tech

13-15 May 2025 Hyatt Regency Tower Barcelona - Spain

Chlor-alkali: achieving climate neutrality