

Utilising hydrogen byproduct to create carbon free transportation

chlor 17.

13-15 May 2025 Barcelona - Spain

Cefic sector group *

Dr. Martin Knoche, Chart Industries

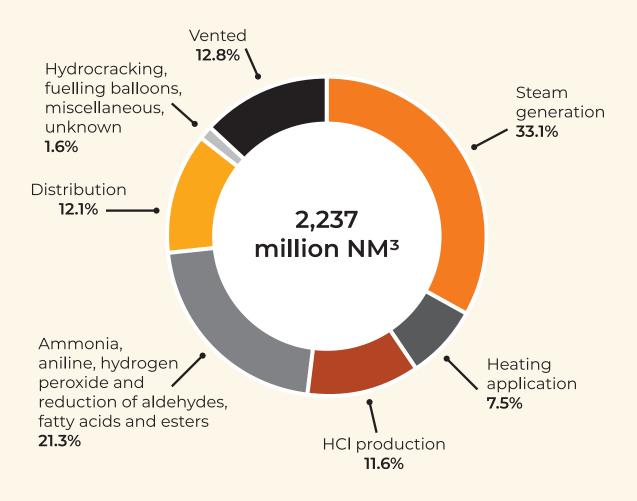
- Introduction
- Hydrogen Liquefaction
- Supply Chain Economics

AGENDA

Chart has more than 12'000 experts in 115 locations across the globe

Current hydrogen use

12th International Chlor-Alkali Technology Conference & Exhibition


> 13-15 May 2025 Barcelona - Spain

Cefic sector group *

Hydrogen use in European Chlorine Production

- 53,4 % of the hydrogen is either vented or thermally used
- This corresponds to about 294 tpd
- If only plants with more than 5 tpd hydrogen are considered, then 260 tpd are remaining
- HCl has a very low commercial value
- Mobility market pays 18-24 €/kg H₂
- Equivalent of 4,3 Mio € per day.
 (@10 €/kg)
- A liquefaction supply chain is paid back (ROI) < 3 years

European hydrogen applications 2023 (percentage of total 2,237 NM³)

Principal Products Manufactured In-house

Liquefaction Plants

Gas Compressors

Refuelling Stations Cryogenic Storage Tanks

Heat Exchangers

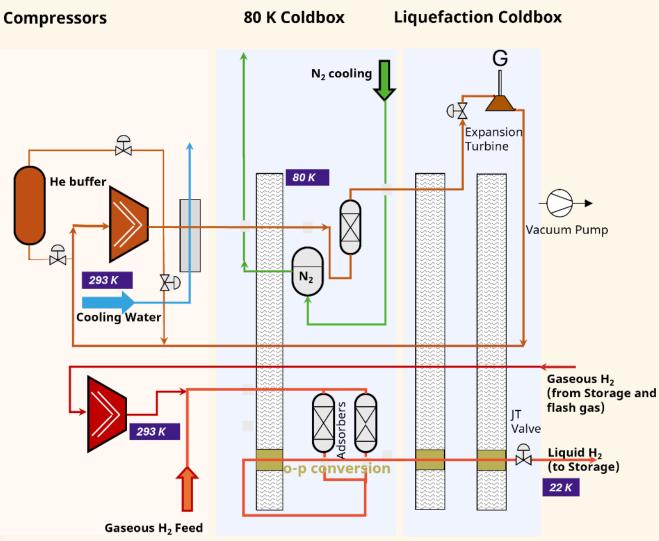
Transport Trailers

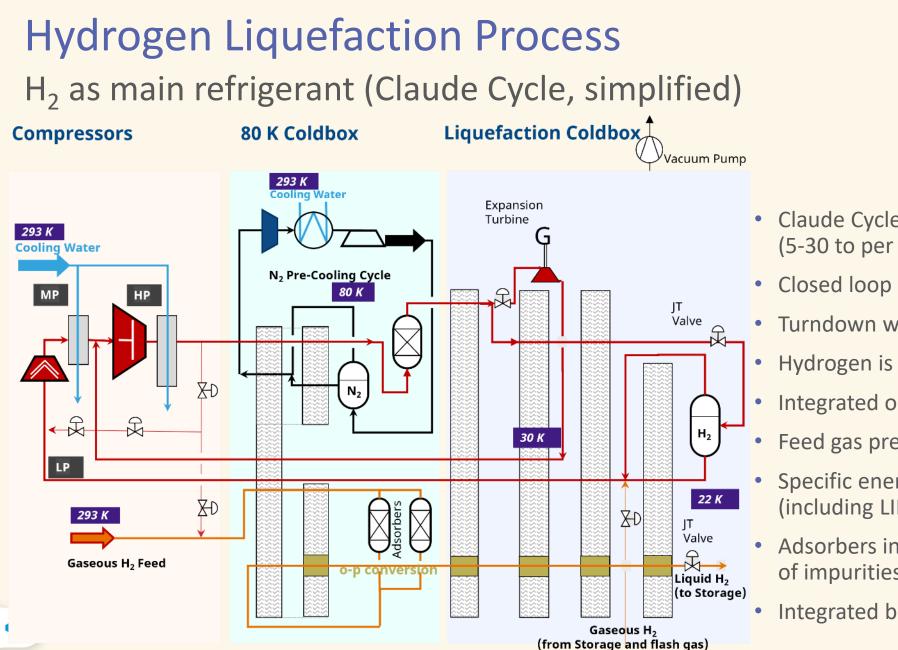
Carbon Capture

Cryogenic Railcars

On-Board Fuel Tanks Cryogenic ISO Containers

- Introduction
- Hydrogen Liquefaction
- Supply Chain Economics


Chart has more than 12'000 experts in 115 locations across the globe



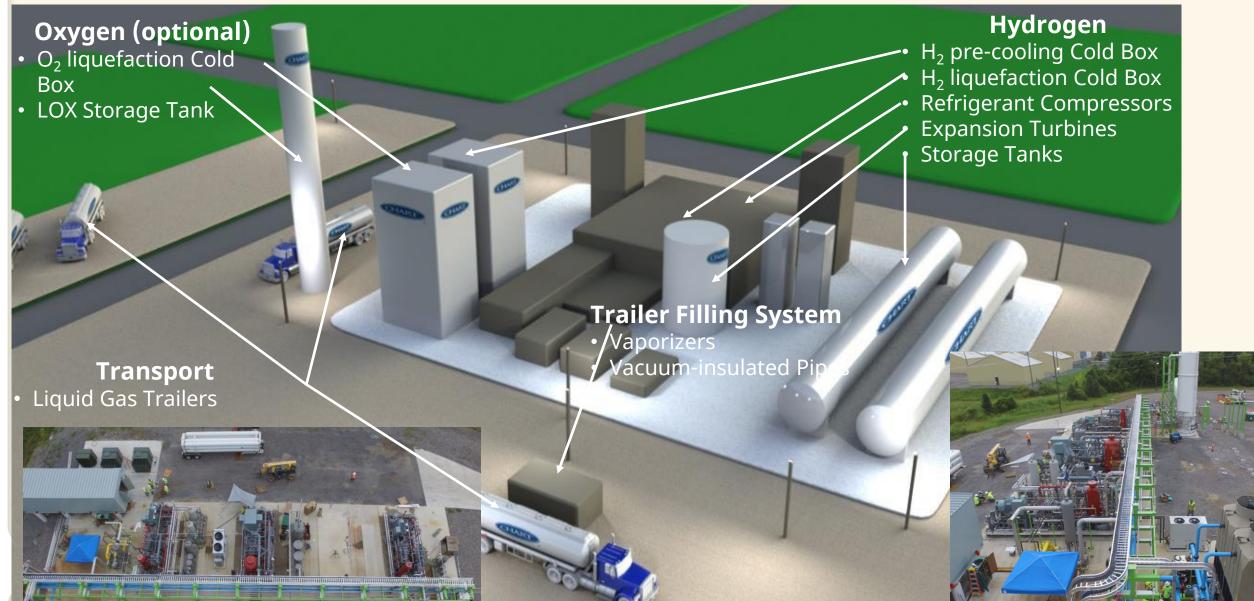
Hydrogen Liquefaction Process

Helium as main refrigerant (Brayton Cycle, simplified)

- Brayton Cycle commonly used for small scale liquefaction (typically 1-2 to per day)
- Sacrificial Nitrogen (reduced CAPEX)
- Turndown with frequency variators or floating pressure concept
- Helium is sourced from natural gas
- Integrated o-p conversion
- Feed gas pressure >15 bara
- Specific energy demand: 15-19 kWh/kg LH₂ (including LIN)
- Adsorbers in alternating operation for removal of impurities

- Claude Cycle commonly used for liquefaction (5-30 to per day)
- Closed loop nitrogen precooling (>10 tpd)
- Turndown with floating pressure concept
- Hydrogen is used as refrigerant
- Integrated o-p conversion
- Feed gas pressure >15 bara
- Specific energy demand: 9-11 kWh/kg LH₂ (including LIN cycle)
- Adsorbers in alternating operation for removal of impurities
- Integrated boil-off gas compression

Hydrogen Liquefaction Process

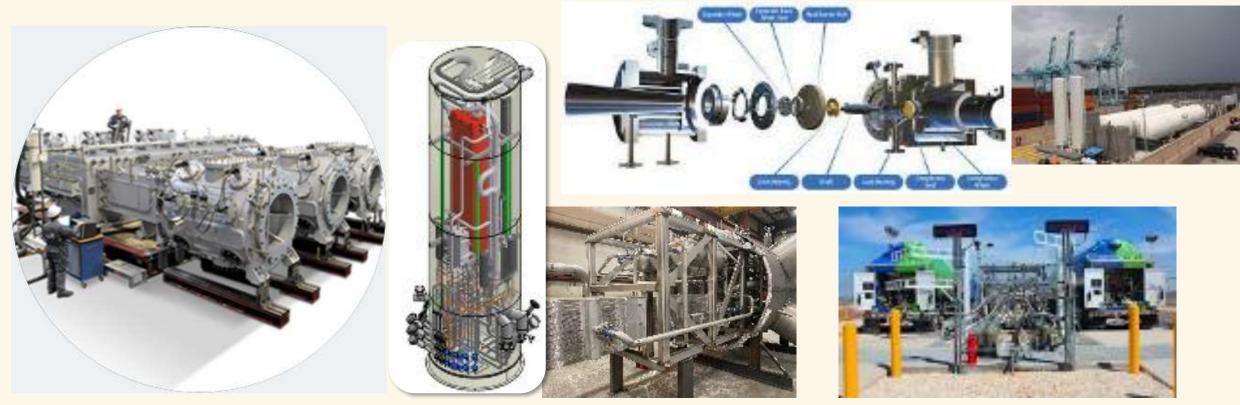

Required Hydrogen Purification

- At 21 K (boiling atmospheric H₂), all gases except for helium and hydrogen are solids
- If impurities freeze out in the refrigerating heat exchangers, performance suffers
- Capex for impurity removal is lowest at atmospheric conditions
- Presence of oxygen in a hydrogen process is a major safety risk
- Feed gas to liquefaction must be less than 1 ppmv O₂
 - Deoxo unit may need to be prolongated
 - Removal of other impurities (case by case)
- Condensation of air: Oxygen condenses first

Hydrogen Liquefaction Process (10 tons/day)

- Introduction
- Hydrogen Liquefaction
- Supply Chain Economics

AGENDA


Chart has more than 12'000 experts in 115 locations across the globe

CAPEX and OPEX for H₂ Supply Chain

• Liquefaction Equipment

• Compressor, Coldbox, Expander, Storage Tanks, Filling Stations

CAPEX and OPEX for H₂ Supply Chain

Increasing Density & Payload

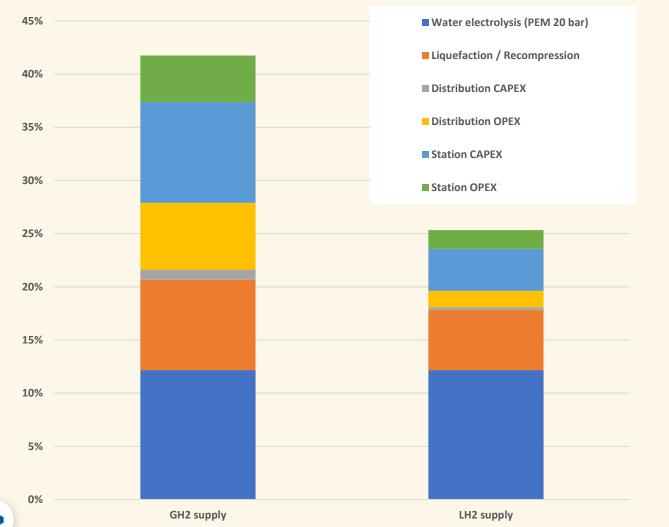
Type III & IV HP GH₂ Trailer

Liquid Hydrogen Rail	car
----------------------	-----

Ţ	ype I Jumbo GH2 Trailer Ty	pe III & IV HP GH2 Trailer	Jumbo Liquid Trailer	Liquid Hydrogen Railca	
Pressure	165 bar	450-525 bar	7.5-11.5 bar	2.5 -4.0 bar	
Density	12-15 g/l	25-40 g/l	70 g/l	70 g/l	
Payload	350 kgs	450-1000 kgs	4,400 kgs	8,000 kgs	
Capex/kg	100%	146%	52%	28%	
+	•Good for low pressure applications at smaller volume	•Good for high pressure applications	•Highest delivered volume by road	•Lowest distribution cost in large volumes	
	•Low Maint. & OPEX < 100 km	•Used for cascade deliveries into ground storage	•Low maintenance & OPEX 800 km+ trips typical	•Can be used to connect sources to hub terminals	
	 Mature supply chain 		 Mature technology 		
	•Requires large footprint	•Higher maintenance	•Higher initial investment	•DOT Permits expired and previous regulations outdated	
-	•Drop & Swap model -most cost effective	•Large residual volume, when not used in drop & swap	 Potential for losses during deliveries & transfers 	•Boil off management required	
	 Residual volume remaining 				

CAPEX and OPEX for H₂ Supply Chain

• Liquid Hydrogen ISO Containers


	ISO Model	UN T75 40 ft ISO		
	Capacity (water vol.)	11,300 gal	42,78	m³
	Payload at 90%	6614 lbs	3'000,0	kg
CHART B	Tare Weight	~12,000 lbs	5'443,1	kg
	MAWP	145 psig	10	bar
	Length	40'	12,19	m
	Width	8'	2,44	m
	Height	8'-6"	2,59	m
	Hold Time	30+ days	30+ days	

12th International Chlor-Alkali Technology Conference & Exhibition, 13-15 May 2025, Barcelona, Spain

Why the Race to Liquid for H₂ Refueling Stations?

The new Hyundai Nexo drives about 97.8 km/kg of hydrogen (April 2025)

	GH ₂ supply	LH ₂ supply
Water electrolysis (PEM 20 bar)	12,2%	12,2%
Liquefaction / Recompression	8,5%	5,6%
Distribution CAPEX	1,0%	0,3%
Distribution OPEX	6,3%	1,5%
Station CAPEX	9,5%	3,9%
Station OPEX	4,4%	1,8%
Total Specific Costs per 100 km		
of a comparable gasoline car	42%	25%

electricity \$ 30,00 per MWh Depreciation: CAPEX gas systems 15 years, liquid 25 years, liquefier 20 years, capacity **30 tpd**, electrolyzer 15 years (pressure cycles for gas equipment are limited)

THANK YOU

Dr. Martin Knoche Chart Industries Inc. <u>Martin.Knoche@chartindustries.com</u> +41 76 337 0633

Ŵ

Cefic sector group *

The European Chemical Industry Council, AISBL – Rue Belliard, 40 - 1040 Brussels – Belgium Transparency Register n°64879142323-90

chlor^{17.}

12th International Chlor-Alkali Technology Conference & Exhibition

13-15 May 2025 Hyatt Regency Tower Barcelona - Spain

Chlor-alkali: achieving climate neutrality

© 2025 Chart Industries, Inc. Confidential and Proprietary

References - Liquid H₂ and He Plant (selection)

Plant Type	Scope of Supply	Capacity [mT/D]	Power [kWh / kg]	Country	Year Built	Coldbox Dimensions (Ø/H in m)	Coldbox Weight [mT]	Precooling type	Precooling LIN [mT/D]	Liquefaction refrigerant
LH ₂	Compression, Liquefaction, Distribution	30 3 trains	11	USA	Project Awarded 2024	To be determined	To be determined		Closed loop LIN recycle & Perlite coldbox	Hydrogen
LH ₂	Compression, Liquefaction, Distribution	15	11	Canada	Project Awarded 2021	Ø 3.05m x 10.07m PCB: 4.27m x 4.27m x 18.4m	VCB: 26.35 PCB: 67.13		Closed loop LIN recycle & Perlite coldbox	Hydrogen
LH ₂	Compression, Liquefaction, Distribution	15	19.75	USA	2024	Ø 2.44m x 9.77m PCB: 3.66m x 4.27m x 18.4m	VCB: 20.41 PCB: 56.06	NI-	Closed loop LIN recycle & Perlite coldbox	Helium
LH ₂	Compression, Liquefaction, Distribution	15	19.75	USA	2023	Ø 2.44m x 9.77m PCB: 3.66m x 4.27m x 18.4m	VCB: 20.41 PCB: 56.06	Na	Closed loop LIN recycle & Perlite coldbox	Helium
LH ₂	Purification, Compression, Liquefaction, Distribution	9,07	15,20	USA	2018	Ø 3.05m x 11.89m H.	28,10	LN_2	71,3	Helium
LH ₂	Purification, Compression, Liquefaction, Distribution	9,07	13,02	USA	2016	Ø 3.05m x 11.89m H.	28,10	LN_2	77,29	Helium
LHe	Purification, Compression, Liquefaction, Distribution, Cooling Water System	3,47	25,50	Russia	2018	Ø 3.05m x 10m H.	34,01	LN_2	11,76	Helium
He	Purification	2,75	0,05	Poland	2016	Ø 2.43m x 9.1m H.	12,44	LN_2	3,89	-
LHe	Purification, Compression, Liquefaction, Distribution	4,05	3,69	USA	2012	Ø 3.05m x 10.12m H.	24,95	LN_2	13,12	Helium
LHe	Purification, Compression, Liquefaction, Distribution	2,17	8,73	Poland	2008	Ø 1.82m x 9.14m L.	15,88	LN_2	1,958	Helium
LHe	Purification, Compression, Liquefaction, Distribution	8,16	2,37	USA	2006	Ø 2.36m x 9.32m H.	17,24	LN_2	13,07	Helium

Plant types in bold characters are supplied with hydrogen from chlorine alkaline plants